climate change and arctic river discharge: challenges of space and time

Introduction
- GCM’s predict increases in high-latitude precipitation due to rising global temperatures
- River discharge measurements provide an important data set to assess climatic changes
- Provide integrative measurement of terrestrial water balance
- Arctic rivers comprise largest single source of freshwater to the Arctic Ocean.
- Changes in Arctic river discharge have implications for:
 - Thermohaline circulation
 - Sea-ice formation
 - Biogeochemistry of aquatic ecosystems
- Documented trends in discharge vary spatially and temporally

Regional Discharge Trends

Eurasian discharge
- Increasing discharge
 - Predict 18-70% increase by 2100
 - Trends correlated with:
 - Global surface air temperature
 - North Atlantic Oscillation (NAO)
 - Positive NAO results in warm, wet winters

North American discharge
- Decreasing discharge
 - Trends correlated with:
 - Decreased precipitation
 - Northern Annular Mode (NAM)
 - El Nino Southern Oscillation (ENSO)
- Negative (NAM) and positive (ENSO) phases allow cold, dry arctic air to penetrate south
- But...
 - Drainage to:
 - Hudson Bay anticorrelated to NAM
 - Bering Strait correlated to NAM
 - Arctic Ocean correlated to ENSO
 - Highlights importance of investigating individual river systems

Local Discharge Trends – North America

Mackenzie River, Canada
- Increasing discharge
- Trends correlated with:
 - Increased precipitation (5% significance level)
 - Northern Annular Mode (NAM) (10% significance level)
- Positive phases of NAM allow mid-latitude storms to penetrate north resulting in wetter climatic conditions and increased discharge

Yukon River, Alaska
- Increasing discharge
- Trends correlated with:
 - Increased winter precipitation
 - Permafrost thawing

Conclusions
- Discharge trends vary spatially
 - Difficult to generalize trends over time
 - Important to assess range of scales
 - Limited historical records make it hard to identify the relationship between discharge and climate change over time
- Management implications for the Mackenzie Basin
 - Water resource planning predicated on historic resource availability
 - Impacts of warming & increased discharge:
 - Reduced flooding – early ice breakup
 - Reduced nutrients supplied to lakes in Mackenzie and Peace-Athabasca deltas
 - Hydroelectric power
 - Streambank erosion & land loss
 - Water quality – pollution from suspended sediment & organic pollutants
- Greenland implications
 - Different hydrology
 - Glacial meltwater driven
 - Discharges likely to increase with ice sheet & glacier melting
 - Spatial variability
 - Melting rates vary spatially (NASA)
 - Measure discharge from individual rivers

Data sources:
- Discharge: Water Survey of Canada Hydrometric Database
- US Geological Survey National Water Information System
- Climate:
 - National Center for Atmospheric Research
 - National Oceanic and Atmospheric Administration